Cart (Loading....) | Create Account
Close category search window

A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kumar, M.J. ; Dept. of Electr. Eng., Indian Inst. of Technol., New Delhi ; Venkataraman, V. ; Nawal, S.

For the first time, a simple and accurate analytical model for the threshold voltage of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs is developed by solving the two-dimensional (2-D) Poisson equation. In the proposed model, the authors have considered several important parameters: 1) the effect of strain (in terms of equivalent Ge mole fraction); 2) short-channel effects; 3) strained-silicon thin-film doping; 4) strained-silicon thin-film thickness; and 5) gate work function and other device parameters. The accuracy of the proposed analytical model is verified by comparing the model results with the 2-D device simulations. It has been demonstrated that the proposed model correctly predicts a decrease in threshold voltage with increasing strain in the silicon thin film, i.e., with increasing equivalent Ge concentration. The proposed compact model can be easily implemented in a circuit simulator

Published in:

Electron Devices, IEEE Transactions on  (Volume:53 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.