By Topic

Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nieuwoudt, A. ; Rice Univ., Houston, TX ; Massoud, Y.

Single-walled carbon nanotube (SWCNT) bundles have the potential to provide an attractive solution for the resistivity and electromigration problems faced by traditional copper interconnects. This paper discusses the modeling of nanotube bundle resistance for on-chip interconnect applications. Based on recent experimental results, the authors model the impact of nanotube diameter on contact and ohmic resistance, which has been largely ignored in previous bundle models. The results indicate that neglecting the diameter-dependent nature of ohmic and contact resistances can produce significant errors. Using the resistance model, it is shown that SWCNT bundles can provide up to one order of magnitude reduction in resistance when compared with traditional copper interconnects depending on bundle geometry and individual nanotube diameter. Furthermore, for local interconnect applications, an optimum nanotube diameter exists to minimize the resistance of the carbon nanotube bundle

Published in:

Electron Devices, IEEE Transactions on  (Volume:53 ,  Issue: 10 )