By Topic

Using nearest neighbor learning to improve Sanger's tree-structured algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
C. -C. Chen ; Inst. of Syst. Sci., Nat. Univ. of Singapore, Kent Ridge

The author identifies several different neural network models which are related to nearest neighbor learning. They include radial basis functions, sparse distributed memory, and localized receptive fields. One way to improve the neural networks' performance is by using the cooperation of different learning algorithms. The prediction of chaotic time series is used as an example to show how nearest neighbor learning can be employed to improve Sanger's tree-structured algorithm which predicts future values of the Mackey-Glass differential delay equation

Published in:

Neural Networks, 1991. 1991 IEEE International Joint Conference on

Date of Conference:

18-21 Nov 1991