Cart (Loading....) | Create Account
Close category search window

Meaningful Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Vitanyi, P.M. ; CWI, Amsterdam

The information in an individual finite object (like a binary string) is commonly measured by its Kolmogorov complexity. One can divide that information into two parts: the information accounting for the useful regularity present in the object and the information accounting for the remaining accidental information. There can be several ways (model classes) in which the regularity is expressed. Kolmogorov has proposed the model class of finite sets, generalized later to computable probability mass functions. The resulting theory, known as Algorithmic Statistics, analyzes the algorithmic sufficient statistic when the statistic is restricted to the given model class. However, the most general way to proceed is perhaps to express the useful information as a total recursive function. The resulting measure has been called the "sophistication" of the object. We develop the theory of recursive functions statistic, the maximum and minimum value, the existence of absolutely nonstochastic objects (that have maximal sophistication-all the information in them is meaningful and there is no residual randomness), determine its relation with the more restricted model classes of finite sets, and computable probability distributions, in particular with respect to the algorithmic (Kolmogorov) minimal sufficient statistic, the relation to the halting problem and further algorithmic properties

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.