By Topic

Comparison of AMSU Millimeter-Wave Satellite Observations, MM5/TBSCAT Predicted Radiances, and Electromagnetic Models for Hydrometeors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
C. Surussavadee ; Res. Lab. of Electron., MIT, Cambridge, MA ; D. H. Staelin

This paper addresses the following: 1) millimeter-wave scattering by icy hydrometeors and 2) the consistency between histograms of millimeter-wave atmospheric radiances observed by satellite instruments [Advanced Microwave Sounding Unit-A/B (AMSU-A/B)] and those predicted by a mesoscale numerical weather prediction (NWP) model (MM5) in combination with a two-stream radiative transfer model (TBSCAT). This observed consistency at 15-km resolution supports use of MM5/TBSCAT as a useful simulation tool for designing and assessing global millimeter-wave systems for remote sensing of precipitation and related parameters at 50-200 GHz. MM5 was initialized by National Center for Environmental Prediction NWP analyses on a 1deg grid approximately 5 h prior to each AMSU transit and employed the Goddard explicit cloud physics model. The scattering behavior of icy hydrometeors, including snow and graupel, was assumed to be that of spheres having an ice density F(lambda) and the same average Mie scattering cross sections as computed using a discrete-dipole approximation implemented by DDSCAT for hexagonal plates and six-pointed rosettes, respectively, which have typical dimensional ratios observed aloft. No tuning beyond the stated assumptions was employed. The validity of these approximations was tested by varying F(lambda) for snow and graupel so as to minimize discrepancies between AMSU and MM5/TBSCAT radiance histograms over 122 global storms. Differences between these two independent determinations of F(lambda) were less than ~0.1 for both snow and graupel. Histograms of radiances for AMSU and MM5/TBSCAT generally agree for 122 global storms and for subsets of convective, stratiform, snowy, and nonglaciated precipitation

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:44 ,  Issue: 10 )