By Topic

An Experimental Study on Pedestrian Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Munder, S. ; Dept. of Machine Perception, DaimlerChrysler Res. & Dev., Ulm ; Gavrila, D.M.

Detecting people in images is key for several important application domains in computer vision. This paper presents an in-depth experimental study on pedestrian classification; multiple feature-classifier combinations are examined with respect to their ROC performance and efficiency. We investigate global versus local and adaptive versus nonadaptive features, as exemplified by PCA coefficients, Haar wavelets, and local receptive fields (LRFs). In terms of classifiers, we consider the popular support vector machines (SVMs), feedforward neural networks, and k-nearest neighbor classifier. Experiments are performed on a large data set consisting of 4,000 pedestrian and more than 25,000 nonpedestrian (labeled) images captured in outdoor urban environments. Statistically meaningful results are obtained by analyzing performance variances caused by varying training and test sets. Furthermore, we investigate how classification performance and training sample size are correlated. Sample size is adjusted by increasing the number of manually labeled training data or by employing automatic bootstrapping or cascade techniques. Our experiments show that the novel combination of SVMs with LRF features performs best. A boosted cascade of Haar wavelets can, however, reach quite competitive results, at a fraction of computational cost. The data set used in this paper is made public, establishing a benchmark for this important problem

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 11 )