Cart (Loading....) | Create Account
Close category search window
 

Assessing Classifiers from Two Independent Data Sets Using ROC Analysis: A Nonparametric Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yousef, W.A. ; Center for Devices & Radiol. Health, Food & Drug Adm., Rockville, MD ; Wagner, R.F. ; Loew, M.H.

This paper considers binary classification. We assess a classifier in terms of the area under the ROC curve (AUC). We estimate three important parameters, the conditional AUC (conditional on a particular training set) and the mean and variance of this AUC. We derive, as well, a closed form expression of the variance of the estimator of the AUG. This expression exhibits several components of variance that facilitate an understanding for the sources of uncertainty of that estimate. In addition, we estimate this variance, i.e., the variance of the conditional AUC estimator. Our approach is nonparametric and based on general methods from U-statistics; it addresses the case where the data distribution is neither known nor modeled and where there are only two available data sets, the training and testing sets. Finally, we illustrate some simulation results for these estimators

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.