By Topic

A Framework Toward Restoration of Writing Order from Single-Stroked Handwriting Image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yu Qiao ; Dept. of Inf. Manage. Sci., Univ. of Electro-Commun., Chofu ; Nishiara, M. ; Yasuhara, M.

Restoration of writing order from a single-stroked handwriting image can be seen as the problem of finding the smoothest path in its graph representation. In this paper, a 3-phase approach to restore a writing order is proposed within the framework of the edge continuity relation (ECR). In the initial, local phase, in order to obtain possible ECRs at an even-degree node, a neural network is used for the node of degree 4 and a theoretical approach is presented for the node of degree higher than 4 by introducing certain reasonable assumptions. In the second phase, we identify double-traced lines by employing maximum weighted matching. This makes it possible to transform the problem of obtaining possible ECRs at odd-degree node to that at even-degree node. In the final, global phase, we find all the candidates of single-stroked paths by depth first search and select the best one by evaluating SLALOM smoothness. Experiments on static images converted from online data in the Unipen database show that our method achieves a restoration rate of 96.0 percent

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:28 ,  Issue: 11 )