By Topic

Routing Correlated Data with Fusion Cost in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this paper, we propose a routing algorithm called minimum fusion Steiner tree (MFST) for energy efficient data gathering with aggregation (fusion) in wireless sensor networks. Different from existing schemes, MFST not only optimizes over the data transmission cost, but also incorporates the cost for data fusion, which can be significant for emerging sensor networks with vectorial data and/or security requirements. By employing a randomized algorithm that allows fusion points to be chosen according to the nodes' data amounts, MFST achieves an approximation ratio of 5/4log(k + 1), where k denotes the number of source nodes, to the optimal solution for extremely general system setups, provided that fusion cost and data aggregation are nondecreasing against the total input data. Consequently, in contrast to algorithms that only excel in full or nonaggregation scenarios without considering fusion cost, MFST can thrive in a wide range of applications

Published in:

IEEE Transactions on Mobile Computing  (Volume:5 ,  Issue: 11 )