Cart (Loading....) | Create Account
Close category search window

Impact of Thermal Gradients on Clock Skew and Testing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bota, S.A. ; Electron. Technol. Group, Univ. of the Balearic Islands, Palma ; Rossello, J.L. ; de Benito, C. ; Keshavarzi, A.
more authors

In this article, we analyze the impact of within-die thermal gradients on clock skew, considering temperature's effect on active devices and the interconnect system. This effect, along with the fact that the test-induced thermal map can differ from the normal-mode thermal map, motivates the need for a careful consideration of the impact of temperature gradients on delay during test. After our analysis, we propose a dual-VDD clocking strategy that reduces temperature-related clock skew effects during test. Clock network design is a critical task in developing high-performance circuits because circuit performance and functionality depend directly on this subsystem's performance. When distributing the clock signal over the chip, clock edges might reach various circuit registers at different times. The difference in clock arrival time between the first and last registers receiving the signal is called clock skew. With tens of millions of transistors integrated on the chip, distributing the clock signal with near-zero skew introduces important constraints in the clock distribution network's physical implementation and affects overall circuit power and area

Published in:

Design & Test of Computers, IEEE  (Volume:23 ,  Issue: 5 )

Date of Publication:

May 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.