By Topic

A Novel Zero-Drift Detection Method for Highly Sensitive GMR Biochips

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. -J. Han ; Dept. of Mater. Sci. & Eng., Stanford Univ. ; L. Xu ; R. J. Wilson ; S. X. Wang

In this paper, we present a novel drift compensation mechanism for highly sensitive biodetection based on giant magnetoresistive (GMR) sensors and magnetic nanoparticles. Micromagnetic simulations showed the quantitative detection ability of this new method. The proposed detection scheme uses both ac current sources and ac magnetic fields along with two dc bias states. Experiments were carried out to detect Miltenyi Biotec (MACS) magnetic nanoparticles on the spin-valve sensor (0.2 mumtimes4 mum). The experimental results show that sub-microvolt drifts can be achieved by this dual bias-double modulation (DBDM) method

Published in:

IEEE Transactions on Magnetics  (Volume:42 ,  Issue: 10 )