By Topic

Adaptive Wavelets for Characterizing Magnetic Flux Leakage Signals From Pipeline Inspection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joshi, A. ; Electr. & Comput. Eng. Dept., Michigan State Univ., East Lansing, MI ; Udpa, L. ; Udpa, S. ; Tamburrino, A.

Natural gas transmission pipelines are commonly inspected using magnetic flux leakage (MFL) method for detecting cracks and corrosion in the pipewall. Traditionally the MFL data obtained is processed to estimate an equivalent length (L), width (W), and depth (D) of defects. This information is then used to predict the maximum safe operating pressure (MAOP). In order to obtain a more accurate estimate for the MAOP, it is necessary to invert the MFL signal in terms of the full three-dimensional (3-D) depth profile of defects. This paper proposes a novel iterative method of inversion using adaptive wavelets and radial basis function neural network (RBFNN) that can efficiently reduce the data dimensionality and predict the full 3-D depth profile. Initials results obtained using simulated data are presented

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 10 )