Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Highly Spin-Polarized Tunneling in Fully Epitaxial Magnetic Tunnel Junctions Using Full-Heusler Alloy Co _2 Cr _0.6 Fe _0.4 Al Thin Film and MgO Tunnel Barrier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Marukame, T. ; Grad. Sch. of Inf. Sci. & Technol., Hokkaido Univ., Sapporo ; Ishikawa, T. ; Sekine, W. ; Matsuda, K.
more authors

Highly spin-polarized tunneling with tunnel magnetoresistance (TMR) ratios of 90% at room temperature and 240% at 4.2 K was demonstrated for fully epitaxial magnetic tunnel junctions fabricated using a cobalt-based full-Heusler alloy Co2Cr0.6Fe 0.4Al (CCFA) thin film having a composition close to the stoichiometric one and a MgO tunnel barrier. A high tunneling spin polarization of 0.79 at 4.2 K was obtained for the epitaxial CCFA films from the TMR ratios. This adds to the promise of the fully epitaxial MTJ as a key device structure for utilizing the intrinsically high spin polarizations of Co-based full-Heusler alloy thin films

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 10 )