By Topic

Drive Integration of Active Flying-Height Control Slider With Micro Thermal Actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Shiramatsu, T. ; Hitachi Global Storage Technol., Kanagawaken ; Kurita, M. ; Miyake, K. ; Suk, M.
more authors

To attain ultra-low flying height, we have developed a thermal flying-height control (TFC) slider that contains a micro-thermal actuator. Using the device, the magnetic spacing of these sliders can be controlled in situ during operation of the drive. A previous prototype had shown insufficient characteristics when evaluated at the component level. The purpose of this research is to develop an improved TFC slider and verify its drive-level feasibility. After designing analytically by simulation of heat transfer and thermal deformation, a prototype of the TFC device was fabricated. Component-level evaluation showed that the actuator characteristics met the requirements necessary for the development of drives with controllable flying-height sliders. Drive-level evaluations showed remarkable effectiveness in the TFC slider in reducing the magnetic spacing

Published in:

Magnetics, IEEE Transactions on  (Volume:42 ,  Issue: 10 )