By Topic

A proposal for a hierarchical MRF model based on conditional probability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Igarashi, H. ; ATR Auditory & Visual Perception Res. Lab., Kyoto, Japan ; Kawato, M.

The standard regularization theory extended to problems where generic constraints or knowledge are expressed within the framework of a Markov random field (MRF) model. This extended theory is applied to image restoration in which a desired state in the line process is given as a constraint. The forward process in transformation between two kinds of visual information, from information of pixel intensity to information of edge configuration, is modeled with a renormalization group technique rather than with the usual optics. Perfect restorations were obtained for some simple pictures

Published in:

Neural Networks, 1991. 1991 IEEE International Joint Conference on

Date of Conference:

18-21 Nov 1991