Cart (Loading....) | Create Account
Close category search window

Performance Analysis of IEEE 802.11 DCF in Imperfect Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu Zheng ; Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL ; Kejie Lu ; Dapeng Wu ; Yuguang Fang

IEEE 802.11 is the most important standard for wireless local area networks (WLANs). In IEEE 802.11, the fundamental medium access control (MAC) scheme is the distributed coordination function (DCF). To understand the performance of WLANs, it is important to analyze IEEE 802.11 DCF. Recently, several analytical models have been proposed to evaluate the performance of DCF under different incoming traffic conditions. However, to the best of the authors' knowledge, there is no accurate model that takes into account both the incoming traffic loads and the effect of imperfect wireless channels, in which unsuccessful packet delivery may occur due to bit transmission errors. In this paper, the authors address this issue and provide an analytical model to evaluate the performance of DCF in imperfect wireless channels. The authors consider the impact of different factors together, including the binary exponential backoff mechanism in DCF, various incoming traffic loads, distribution of incoming packet size, queueing system at the MAC layer, and the imperfect wireless channels, which has never been done before. Extensive simulation and analysis results show that the proposed analytical model can accurately predict the delay and throughput performance of IEEE 802.11 DCF under different channel and traffic conditions

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:55 ,  Issue: 5 )

Date of Publication:

Sept. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.