By Topic

Maximum Likelihood Estimation of Compound-Gaussian Clutter and Target Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jian Wang ; Electr. & Comput. Eng. Dept., Illinois Univ., Chicago, IL ; Dogandzic, A. ; Nehorai, Arye

Compound-Gaussian models are used in radar signal processing to describe heavy-tailed clutter distributions. The important problems in compound-Gaussian clutter modeling are choosing the texture distribution, and estimating its parameters. Many texture distributions have been studied, and their parameters are typically estimated using statistically suboptimal approaches. We develop maximum likelihood (ML) methods for jointly estimating the target and clutter parameters in compound-Gaussian clutter using radar array measurements. In particular, we estimate i) the complex target amplitudes, ii) a spatial and temporal covariance matrix of the speckle component, and iii) texture distribution parameters. Parameter-expanded expectation-maximization (PX-EM) algorithms are developed to compute the ML estimates of the unknown parameters. We also derived the Cramer-Rao bounds (CRBs) and related bounds for these parameters. We first derive general CRB expressions under an arbitrary texture model then simplify them for specific texture distributions. We consider the widely used gamma texture model, and propose an inverse-gamma texture model, leading to a complex multivariate t clutter distribution and closed-form expressions of the CRB. We study the performance of the proposed methods via numerical simulations

Published in:

Signal Processing, IEEE Transactions on  (Volume:54 ,  Issue: 10 )