Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Symbolic Framework for Linear Active Circuits Based on Port Equivalence Using Limit Variables

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Haigh, D.G. ; Dept. of Electr. & Electron. Eng., Imperial Coll., London ; Clarke, T.J.W. ; Radmore, P.M.

This paper proposes a new framework for linear active circuits that can encompass both circuit analysis and synthesis. The framework is based on a definition of port equivalence for admittance matrices. This is extended to cover circuits with ideal active elements through the introduction of a special type of limit-variable called the infinity-variable (infin-variable). A theorem is developed for matrices containing infin-variables that may be utilized in both circuit analysis and synthesis. The notation developed in this framework can describe nonideal elements as well as ideal elements and therefore the framework encompasses systematic circuit modeling

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:53 ,  Issue: 9 )