By Topic

Integrated Optoelectronic Probe Including a Vertical Cavity Surface Emitting Laser for Laser Doppler Perfusion Monitoring

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

An integrated optoelectronic probe with small dimensions, for direct-contact laser Doppler blood flow monitoring has been realized. A vertical cavity surface emitting laser (VCSEL), and a chip with photodetectors and all necessary electronics are integrated in a miniature probe head connected to a laptop computer. The computer sound processor is utilized for acquisition and digital signal processing of the incoming Doppler signal. In this paper, the design of the laser Doppler perfusion monitor is described and its performance is evaluated. We demonstrate our perfusion monitor to be less sensitive to subject motion than a commercial fiber-optic device. For medium and high perfusion levels, the performance of our integrated probe is comparable to the fiber-optic flowmeter containing a normal edge-emitting laser diode. For very low perfusion levels, the signal-to-noise ratio of the fiber-optic device is higher. This difference can mainly be attributed to the shorter coherence length of the VCSEL compared with the edge-emitting laser diode

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 10 )