Cart (Loading....) | Create Account
Close category search window
 

Dimensionality Reduction of a Pathological Voice Quality Assessment System Based on Gaussian Mixture Models and Short-Term Cepstral Parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Godino-Llorente, J.I. ; EUIT Telecomunicacion, Univ. Politecnica de Madrid ; Gomez-Vilda, P. ; Blanco-Velasco, M.

Voice diseases have been increasing dramatically in recent times due mainly to unhealthy social habits and voice abuse. These diseases must be diagnosed and treated at an early stage, especially in the case of larynx cancer. It is widely recognized that vocal and voice diseases do not necessarily cause changes in voice quality as perceived by a listener. Acoustic analysis could be a useful tool to diagnose this type of disease. Preliminary research has shown that the detection of voice alterations can be carried out by means of Gaussian mixture models and short-term mel cepstral parameters complemented by frame energy together with first and second derivatives. This paper, using the F-Ratio and Fisher's discriminant ratio, will demonstrate that the detection of voice impairments can be performed using both mel cepstral vectors and their first derivative, ignoring the second derivative

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:53 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.