By Topic

Chemical Plume Source Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shuo Pang ; Dept. of Electr. Eng., California Univ., Riverside, CA ; Farrell, J.A.

This paper addresses the problem of estimating a likelihood map for the location of the source of a chemical plume using an autonomous vehicle as a sensor probe in a fluid flow. The fluid flow is assumed to have a high Reynolds number. Therefore, the dispersion of the chemical is dominated by turbulence, resulting in an intermittent chemical signal. The vehicle is capable of detecting above-threshold chemical concentration and sensing the fluid flow velocity at the vehicle location. This paper reviews instances of biological plume tracing and reviews previous strategies for a vehicle-based plume tracing. The main contribution is a new source-likelihood mapping approach based on Bayesian inference methods. Using this Bayesian methodology, the source-likelihood map is propagated through time and updated in response to both detection and nondetection events. Examples are included that use data from in-water testing to compare the mapping approach derived herein with the map derived using a previously existing technique

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 5 )