By Topic

Design and Stabilization of Sampled-Data Neural-Network-Based Control Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lam, H.K. ; Dept. of Electron. & Electr. Eng., King''s Coll., London ; Leung, F.H.F.

This paper presents the design and stability analysis of a sampled-data neural-network-based control system. A continuous-time nonlinear plant and a sampled-data three-layer fully connected feedforward neural-network-based controller are connected in a closed loop to perform the control task. Stability conditions will be derived to guarantee the closed-loop system stability. Linear-matrix-inequality- and genetic-algorithm-based approaches will be employed to obtain the largest sampling period and the connection weights of the neural network subject to the considerations of the system stability and performance. An application example will be given to illustrate the design procedure and effectiveness of the proposed approach

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:36 ,  Issue: 5 )