By Topic

Minimal Stochastic Complexity Image Partitioning With Unknown Noise Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Delyon, G. ; CNRS, Phys. & lmag Process. Group, Marseille ; Galland, F. ; Refregier, P.

We present a generalization of a new statistical technique of image partitioning into homogeneous regions to cases where the family of the probability laws of the gray-level fluctuations is a priori unknown. For that purpose, the probability laws are described with step functions whose parameters are estimated. This approach is based on a polygonal grid which can have an arbitrary topology and whose number of regions and regularity of its boundaries are obtained by minimizing the stochastic complexity of the image. We demonstrate that efficient homogeneous image partitioning can be obtained when no parametric model of the probability laws of the gray levels is used and that this approach leads to a criterion without parameter to be tuned by the user. The efficiency of this technique is compared to a statistical parametric technique on a synthetic image and is compared to a standard unsupervised segmentation method on real optical images

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 10 )