By Topic

Image and Texture Segmentation Using Local Spectral Histograms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiuwen Liu ; Dept. of Comput. Sci., Florida State Univ., Tallahassee, FL ; DeLiang Wang

We present a method for segmenting images consisting of texture and nontexture regions based on local spectral histograms. Defined as a vector consisting of marginal distributions of chosen filter responses, local spectral histograms provide a feature statistic for both types of regions. Using local spectral histograms of homogeneous regions, we decompose the segmentation process into three stages. The first is the initial classification stage, where probability models for homogeneous texture and nontexture regions are derived and an initial segmentation result is obtained by classifying local windows. In the second stage, we give an algorithm that iteratively updates the segmentation using the derived probability models. The third is the boundary localization stage, where region boundaries are localized by building refined probability models that are sensitive to spatial patterns in segmented regions. We present segmentation results on texture as well as nontexture images. Our comparison with other methods shows that the proposed method produces more accurate segmentation results

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 10 )