By Topic

Robust and Efficient Image Alignment Based on Relative Gradient Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. -D. Wei ; Dept. of Comput. Sci., Nat. Tsing-Hua Univ., Hsinchu ; S. -H. Lai

In this paper, we present a robust image alignment algorithm based on matching of relative gradient maps. This algorithm consists of two stages; namely, a learning-based approximate pattern search and an iterative energy-minimization procedure for matching relative image gradient. The first stage finds some candidate poses of the pattern from the image through a fast nearest-neighbor search of the best match of the relative gradient features computed from training database of feature vectors, which are obtained from the synthesis of the geometrically transformed template image with the transformation parameters uniformly sampled from a given transformation parameter space. Subsequently, the candidate poses are further verified and refined by matching the relative gradient images through an iterative energy-minimization procedure. This approach based on the matching of relative gradients is robust against nonuniform illumination variations. Experimental results on both simulated and real images are shown to demonstrate superior efficiency and robustness of the proposed algorithm over the conventional normalized correlation method

Published in:

IEEE Transactions on Image Processing  (Volume:15 ,  Issue: 10 )