Cart (Loading....) | Create Account
Close category search window

Asymptotic Global Confidence Regions for 3-D Parametric Shape Estimation in Inverse Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

This paper derives fundamental performance bounds for statistical estimation of parametric surfaces embedded in Ropf3. Unlike conventional pixel-based image reconstruction approaches, our problem is reconstruction of the shape of binary or homogeneous objects. The fundamental uncertainty of such estimation problems can be represented by global confidence regions, which facilitate geometric inference and optimization of the imaging system. Compared to our previous work on global confidence region analysis for curves [two-dimensional (2-D) shapes], computation of the probability that the entire surface estimate lies within the confidence region is more challenging because a surface estimate is an inhomogeneous random field continuously indexed by a 2-D variable. We derive an asymptotic lower bound to this probability by relating it to the exceedence probability of a higher dimensional Gaussian random field, which can, in turn, be evaluated using the tube formula due to Sun. Simulation results demonstrate the tightness of the resulting bound and the usefulness of the three-dimensional global confidence region approach

Published in:

Image Processing, IEEE Transactions on  (Volume:15 ,  Issue: 10 )

Date of Publication:

Oct. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.