By Topic

Design and Evaluation of a Stance-Control Knee-Ankle-Foot Orthosis Knee Joint

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yakimovich, T. ; Dept. of Mech. Eng., Ottawa Univ., Ont. ; Kofman, J. ; Lemaire, E.D.

Conventional knee-ankle-foot orthoses (KAFOs) are prescribed for people with knee-extensor muscle weakness. However, the orthoses lock the knee in full extension and, therefore, do not permit a natural gait pattern. A new electromechanical stance-control knee-ankle-foot orthosis (SCKAFO) knee joint that employs a novel friction-based belt-clamping mechanism was designed to enable a more natural gait. The SCKAFO knee joint allows free knee motion during swing and other non-weight-bearing activities and inhibits knee flexion while allowing knee extension during weight bearing. A prototype SCKAFO knee joint was mechanically tested to determine the moment at failure, loading behavior, and wear resistance. The mean maximum resisting moment of the SCKAFO knee joint over five loading trials was 69 Nm plusmn4.9 Nm. The SCKAFO knee-joint strength and performance were sufficient to allow testing on a 90 kg subject at normal walking cadence. Proper function of the new electromechanical knee joint was verified in walking trials of an able-bodied subject

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 3 )