By Topic

Locomotor-Related Networks in the Lumbosacral Enlargement of the Adult Spinal Cat: Activation Through Intraspinal Microstimulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Guevremont, L. ; Dept. of Biomed. Eng., Alberta Univ., Edmonton, Alta. ; Renzi, C.G. ; Norton, J.A. ; Kowalczewski, J.
more authors

It is commonly accepted that locomotor-related neuronal circuitry resides in the lumbosacral spinal cord. Pharmacological agents, epidural electrical stimulation, and sensory stimulation can be used to activate these intrinsic networks in in vitro neonatal rat and in vivo cat preparations. In this study, we investigated the use of low-level tonic intraspinal microstimulation (ISMS) as a means of activating spinal locomotor networks in adult cats with complete spinal transections. Trains of low-amplitude electrical pulses were delivered to the spinal cord via groups of fine microwires implanted in the ventral horns of the lumbosacral enlargement. In contrast to published reports, tonic ISMS applied through microwires in the caudal regions of the lumbosacral enlargement (L7-S1) was more effective in eliciting alternating movements in the hindlimbs than stimulation in the rostral regions. Possible mechanisms of action of tonic ISMS include depolarization of locally oscillating networks in the lumbosacral cord, backfiring of primary afferents, or activation of propriospinal neurons

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 3 )