By Topic

Phase-Dependent Effects of Spinal Cord Stimulation on Locomotor Activity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Vogelstein, R.J. ; Dept. of Biomed. Eng., Johns Hopkins Univ., Baltimore, MD ; Etienne-Cummings, R. ; Thakor, N.V. ; Cohen, A.H.

This paper examines how electrical stimulation of the spinal cord can modulate the output of the central pattern generator (CPG) for locomotion. Application of discrete current pulses to a single spinal segment was shown to affect multiple parameters of an ongoing locomotor pattern in an in vitro spinal cord. For any given stimulus, the effects on frequency, duration, and symmetry of locomotor output were strongly dependent on the phase at which stimulation was applied within the CPG cycle. Additionally, most stimuli had an immediate impact and evinced no effects on subsequent cycles. The most dramatic changes were seen when stimulation was applied during motor bursting: stimuli applied to the ipsilateral spinal hemicord increased the burst length, while stimuli applied to the contralateral spinal hemicord decreased the burst length. Smaller changes were observed when stimulating during delays between motor bursts. Thus, phasic stimulation was shown to influence the behavior of the CPG and spinal locomotion circuits on a cycle-by-cycle basis. This work represents the first step toward our ultimate goal of developing a neuroprosthetic device to restore locomotion after a severe spinal cord injury

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 3 )