By Topic

Experiential Sampling on Multiple Data Streams

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kankanhalli, M.S. ; Sch. of Comput., Nat. Univ. of Singapore ; Jun Wang ; Jain, R.

Multimedia systems must deal with multiple data streams. Each data stream usually contains significant volume of redundant noisy data. In many real-time applications, it is essential to focus the computing resources on a relevant subset of data streams at any given time instant and use it to build the model of the environment. We formulate this problem as an experiential sampling problem and propose an approach to utilize computing resources efficiently on the most informative subset of data streams. In this paper, we generalize our experiential sampling framework to multiple data streams and provide an evaluation measure for this technique. We have successfully applied this framework to the problems of traffic monitoring, face detection and monologue detection

Published in:

Multimedia, IEEE Transactions on  (Volume:8 ,  Issue: 5 )