By Topic

MEMS Gas-Sensor Array for Monitoring the Perceived Car-Cabin Air Quality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Microelectromechanical-system (MEMS) metal-oxide gas sensors have reached a mature stage, which makes mass market applications in the automotive area possible. In contrast to the already established flap-control system, which controls the access of (combustion) gases from outside the vehicle to the car cabin, the system studied here detects odor events created within the car cabin. The events under study have been cigarette smoke, fast-food odor, manure, and bioeffluents (flatulence). As the reference cannot be a "simple analytical measurement," a human test panel for assessing the hedonic impression on a scale from 0 to 5 is used as reference. The technical system is a MEMS metal-oxide-sensor array consisting of three different sensors. The data-evaluation approach used here is combining the human-sensory data and the MEMS sensor data. The task is performed by the combination of two independent algorithms, where one is related to the normalized conductance and the other to signal variance. Using a combined approach has the advantage that "false" events are suppressed. After the algorithm was successfully transferred onto a microcontroller, real-life data were recorded and classified. Several practical examples are given in this paper. The overall gas-sensor system reaches good accordance with the human-sensory impression, which is represented by air quality levels. This enables the design of a demand-controlled ventilation system

Published in:

Sensors Journal, IEEE  (Volume:6 ,  Issue: 5 )