Cart (Loading....) | Create Account
Close category search window
 

Using Mutation Analysis for Assessing and Comparing Testing Coverage Criteria

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Andrews, J.H. ; Dept. of Comput. Sci., Univ. of Western Ontario, London, Ont. ; Briand, L.C. ; Labiche, Y. ; Namin, A.S.

The empirical assessment of test techniques plays an important role in software testing research. One common practice is to seed faults in subject software, either manually or by using a program that generates all possible mutants based on a set of mutation operators. The latter allows the systematic, repeatable seeding of large numbers of faults, thus facilitating the statistical analysis of fault detection effectiveness of test suites; however, we do not know whether empirical results obtained this way lead to valid, representative conclusions. Focusing on four common control and data flow criteria (block, decision, C-use, and P-use), this paper investigates this important issue based on a middle size industrial program with a comprehensive pool of test cases and known faults. Based on the data available thus far, the results are very consistent across the investigated criteria as they show that the use of mutation operators is yielding trustworthy results: generated mutants can be used to predict the detection effectiveness of real faults. Applying such a mutation analysis, we then investigate the relative cost and effectiveness of the above-mentioned criteria by revisiting fundamental questions regarding the relationships between fault detection, test suite size, and control/data flow coverage. Although such questions have been partially investigated in previous studies, we can use a large number of mutants, which helps decrease the impact of random variation in our analysis and allows us to use a different analysis approach. Our results are then; compared with published studies, plausible reasons for the differences are provided, and the research leads us to suggest a way to tune the mutation analysis process to possible differences in fault detection probabilities in a specific environment

Published in:

Software Engineering, IEEE Transactions on  (Volume:32 ,  Issue: 8 )

Date of Publication:

Aug. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.