By Topic

Graph Signatures for Visual Analytics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pak Chung Wong ; Pacific Northwest Nat. Lab., Richland, WA ; Foote, H. ; Chin, G. ; Mackey, P.
more authors

We present a visual analytics technique to explore graphs using the concept of a data signature. A data signature, in our context, is a multidimensional vector that captures the local topology information surrounding each graph node. Signature vectors extracted from a graph are projected onto a low-dimensional scatterplot through the use of scaling. The resultant scatterplot, which reflects the similarities of the vectors, allows analysts to examine the graph structures and their corresponding real-life interpretations through repeated use of brushing and linking between the two visualizations. The interpretation of the graph structures is based on the outcomes of multiple participatory analysis sessions with intelligence analysts conducted by the authors at the Pacific Northwest National Laboratory. The paper first uses three public domain data sets with either well-known or obvious features to explain the rationale of our design and illustrate its results. More advanced examples are then used in a customized usability study to evaluate the effectiveness and efficiency of our approach. The study results reveal not only the limitations and weaknesses of the traditional approach based solely on graph visualization, but also the advantages and strengths of our signature-guided approach presented in the paper

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 6 )