By Topic

High-Dimensional Visual Analytics: Interactive Exploration Guided by Pairwise Views of Point Distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wilkinson, L. ; SPSS Inc., Chicago, IL ; Anand, A. ; Grossman, R.

We introduce a method for organizing multivariate displays and for guiding interactive exploration through high-dimensional data. The method is based on nine characterizations of the 2D distributions of orthogonal pairwise projections on a set of points in multidimensional Euclidean space. These characterizations include such measures as density, skewness, shape, outliers, and texture. Statistical analysis of these measures leads to ways for 1) organizing 2D scatterplots of points for coherent viewing, 2) locating unusual (outlying) marginal 2D distributions of points for anomaly detection and 3) sorting multivariate displays based on high-dimensional data, such as trees, parallel coordinates, and glyphs

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:12 ,  Issue: 6 )