By Topic

Graph Traversal Techniques and the Maximum Flow Problem in Distributed Computation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
To-Yat Cheung ; Department of Computer Science, University of Ottawa

This paper shows that graph traversal techniques have fundamental differences between serial and distributed computations in their behaviors, computational complexities, and effects on the design of graph algorithms. It has three major parts. Section I describes the computational environment for the design and description of distributed graph algorithms in terms of an architectural model for message exchanges. The computational complexity is measured in terms of the number of messages transmitted. Section II presents several distributed algorithms for the pure traversal, depth-first search, and breadth-first search techniques. Their complexities are also given. Through these descriptions are brought out some of the intrinsic differences in the behaviors and complexities of the fundamental traversal techniques between a serial and a distributed computation environment. Section III gives the distributed version of the Ford and Fulkerson algorithm for the maximum flow problem by means of depth-first search, the largest-augmentation search and breadth-first search. The complexities of these methods are found to be 0(f*|A|), 0((l + logM/(M-1)f*|V||A|) and O(|V|6), respectively, where f* is the maximum flow value of the problem, M is the maximum number of ucs in a cut, |V| is the number of vertices, and |A| is the number of arcs. Lastly, it is shown that the largest augmentation search may be a better method than the other two. This is contrary to the known results in serial computation.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-9 ,  Issue: 4 )