By Topic

A Family of Locking Protocols for Database Systems that Are Modeled by Directed Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Silberschatz ; Department of Computer Sciences, University of Texas ; Z. M. Kedam

This paper is concerned with the problem of ensuring the integrity of database systems that are accessed concurrently by a number of independent asychronously running transactions. It is assumed that the database system is partitioned into small units that are referred to as the database entities. The relation between the entities is represented by a directed acyclic graph in which the vertices correspond to the database entities and the arcs correspond to certain access rights. We develop a family of non-two-phase locking protocols for such systems that will be shown to ensure serializability and deadlock-freedom. This family is sufficientdy general to encompass all the previously developed non-two-phase lose locking protocols as well as a number of new protocols. One of these new protocols that seems to be particularly useful is also presented in this paper.

Published in:

IEEE Transactions on Software Engineering  (Volume:SE-8 ,  Issue: 6 )