By Topic

Formal Program Verification Using Symbolic Execution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dannenberg, R.B. ; Department of Computer Science, Carnegie-Mellon University ; Ernst, G.W.

Symbolic execution provides a mechanism for formally proving programs correct. A notation is introduced which allows a concise presentation of rules of inference based on symbolic execution. Using this notation, rules of inference are developed to handle a number of language features, including loops and procedures with multiple exits. An attribute grammar is used to formally describe symbolic expression evaluation, and the treatment of function calls with side effects is shown to be straightforward. Because symbolic execution is related to program interpretation, it is an easy-to-comprehend, yet powerful technique. The rules of inference are useful in expressing the semantics of a language and form the basis of a mechanical verification condition generator.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-8 ,  Issue: 1 )