By Topic

On Homogeneity and On Line=Off-Line Behavior in M/G/1 Queueing Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bryant, R.M. ; Department of Computer Sciences and the Madison Academic Computing Center, University of Wisconsin-Madison

Operational analysis replaces certain classical queueing theory assumptions with the conditions of "homogeneous service times" and "on-line= off-line behavior." In this paper we explore the relationship between the operational and classical concepts for the sample paths of an M/G/1 queueing system. The primary results are that the sample paths can have these operational properties with nonzero probability if and only if the service time is exponential. We also state dual results for interarrival times in G/M/l. Additionally, we show that open, feedforward networks of single server queues can have product form solutions valid across a range of system arrival rates if and only if all of the service times are exponential. Finally, we consider the relationship between the operational quantities S(n) and the mean service time in M/G/1. This relationship is shown to depend on the form of the service time distribution. It follows that using operational analysis to predict the performance of an M/G/1 queueing system will be most successful when the service time is exponential. Simulation evidence is presented which supports this claim.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-7 ,  Issue: 3 )