By Topic

Internal Scheduling and Memory Contention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Smith, A.J. ; Computer Science Division, Department of Electrical Engineering and Computer Sciences, University of California

It has been suggested that the algorithm used to schedule those processes active and in main memory can have an effect on memory contention. We create models for memory contention in a system that uses global LRU replacement and either round robin or priority internal scheduling. Parameters to our model include the ratio of secondary storage to primary storage access times, thus allowing consideration of a variety of storage technologies. The round robin quantum size is included and is shown to have some effect. Our model uses LRU miss ratio curves and thus reflects actual program characteristics. Trace driven simulations are used to verify the accuracy of the models. We find that in most cases internal scheduling has only a small effect on page fault rates and CPU utilization. In certain cases, however priority scheduling is found to besignificant in relieving thrashing.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-7 ,  Issue: 1 )