By Topic

Incorporating System Overhead in Queuing Network Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kritzinger, P.S. ; Department of Computer Science, University of Stellenbosch ; Krzesinski, A.E. ; Teunissen, P.

Multiclass queuing network models of multiprogramming computer systems are frequently used to predict the performance of computing systems as a function of user workload and hardware configuration. This paper examines three different methods for incorporating operating system overhead in multiclass queuing network models. The goal of the resultant model is to provide an accurate account of the processing performance and the system CPU overhead of each of the several different types of jobs (batch, timesharing, transaction processing, etc.) that together make up the multiprogramming workload. The first method introduces an operating sysbtm workload consisting of a fixed number of jobs to represent system CPU overhead processing. The second method extends the jobs' CPU service requests to include explicitly the CPU overhead necessary for system processing. The third method employs a communicating set of user and system job classes so that the CPU overhead can be modeled by switching jobs from user to system class whenever they require system CPU service. The capabilities and accuracy of the three methods are assessed and compared against performance and overhead data measured on a Univac 1110 computer.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-6 ,  Issue: 4 )