By Topic

Distributed Simulation: A Case Study in Design and Verification of Distributed Programs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chandy, K.M. ; Department of Computer Sciences, University of Texas ; Misra, J.

The problem of system simulation is typically solved in a sequential manner due to the wide and intensive sharing of variables by all parts of the system. We propose a distributed solution where processes communicate only through messages with their neighbors; there are no shared variables and there is no central process for message routing or process scheduling. Deadlock is avoided in this system despite the absence of global control. Each process in the solution requires only a limited amount of memory. The correctness of a distributed system is proven by proving the correctness of each of its component processes and then using inductive arguments. The proposed solution has been empirically found to be efficient in preliminary studies. The paper presents formal, detailed proofs of correctness.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-5 ,  Issue: 5 )