By Topic

Some Analysis Techniques for Asynchronous Multiprocessor Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
J. T. Robinson ; Department of Computer Science, Carnegie-Mellon University

Efficient algorithms for asynchronous multiprocessor systems must achieve a balance between low process communication and high adaptability to variations in process speed. Algorithms that employ problem decomposition may be classified as static (in which decomposition takes place before execution) and dynamic (in which decomposition takes place during execution). Static and dynamic algorithms are particularly suited for low process communication and high adaptability, respectively. For static algorithms the following analysis techniques are presented: finding the probability distribution of execution time, deriving bounds on mean execution time using order statistics, finding asymptotic mean speedup, and using approximations. For dynamic algorithms the technique of modeling using a queueing system is presented. For each technique, an example application to parallel sorting is given.

Published in:

IEEE Transactions on Software Engineering  (Volume:SE-5 ,  Issue: 1 )