By Topic

Constructive Methods in Program Verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wegbreit, Ben ; Xerox Palo Alto Research Center

Most current approaches to mechanical program verification transform a program and its specifications into first-order formulas and try to prove these formulas valid. Since the first-order predicate calculus is not decidable, such approaches are inherently limited. This paper proposes an alternative approach to program verification: correctness proofs are constructively established by proof justifications written in an algorithmic notation. These proof justifications are written as part of the program, along with the executable code and correctness specifications. A notation is presented in which code, specifications, and justifications are interwoven. For example, if a program contains a specification 3x P(x), the program also contains a justification that exhibits the particulat value of x that makes P true. Analogously, justifications may be used to state how universally quantified formulas are to be instantiated when they are used as hypotheses. Programs so justifiled may be verified by proving quantifier-free formulas. Additional classes of justifications serve related ends. Formally, justifications reduce correctness to a decidable theory. Informally, justifications establish the connection between the executable code and correctness specifications, documenting the reasoning on which the correctness is based.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-3 ,  Issue: 3 )