By Topic

Reflexive Incidence Matrx (RIM) Representation of Petri Nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Das, S.K. ; Department of Computer Science, University of Central Florida ; Agrawal, V.K. ; Sarkar, D. ; Patnaik, L.M.
more authors

Although incidence matrix representation has been used to analyze the Petri net based models of a system, it has the limitation that it does not preserve reflexive properties (i.e., the presence of self-loops) of Petri nets. But in many practical applications self-loops play very important roles. This paper proposes a new representation scheme for general Petri nets. This scheme defines a matrix called "reflexive incidence matrix (RIM) Cr," which is a combination of two matrices, a "base matrix Cb," and a "power matrix Cp." This scheme preserves the reflexive and other properties of the Petri nets. Through a detailed analysis it is shown that the proposed scheme requires less memory space and less processing time for answering commonly encountered net queries compared to other schemes. Algorithms to generate the RIM from the given net description and to decompose RIM into input and output function matrices are also given. The proposed Petri net representation scheme is very useful to model and analyze the systems having shared resources, chemical processes, network protocols, etc., and to evaluate the performance of asynchronous concurrent systems.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-13 ,  Issue: 6 )