By Topic

Performance and Reliability Analysis Using Directed Acyclic Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sahner, Robin A. ; Gould Computer Systems Division ; Trivedi, K.S.

A graph-based modeling technique has been developed for the stochastic analysis of systems containing concurrency. The basis of the technique is the use of directed acyclic graphs. These graphs represent event-precedence networks where activities may occur serially, probabilistically, or concurrently. When a set of activities occurs concurrently, the condition for the set of activities to complete is that a specified number of the activities must complete. This includes the special cases that one or all of the activities must complete. The cumulative distribution function associated with an activity is assumed to have exponential polynomial form. Further generality is obtained by allowing these distributions to have a mass at the origin and/or at infinity. The distribution function for the time taken to complete the entire graph is computed symbolically in the time parameter t. The technique allows two or more graphs to be combined hierarchically. Applications of the technique to the evaluation of concurrent program execution time and to the reliability analysis of fault-tolerant systems are discussed.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-13 ,  Issue: 10 )