By Topic

RUBRIC: A System for Rule-Based Information Retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mc Cune, B.P. ; Advanced Information & Decision Systems ; Tong, R.M. ; Dean, J.S. ; Shapiro, D.G.

A research prototype software system for conceptual information retrieval has been developed. The goal of the system, called RUBRIC, is to provide more automated and relevant access to unformatted textual databases. The approach is to use production rules from artificial intelligence to define a hierarchy of retrieval subtopics, with fuzzy context expressions and specific word phrases at the bottom. RUBRIC allows the definition of detailed queries starting at a conceptual level, partial matching of a query and a document, selection of only the highest ranked documents for presentation to the user, and detailed explanation of how and why a particular document was selected. Initial experiments indicate that a RUBRIC rule set better matches human retrieval judgment than a standard Boolean keyword expression, given equal amounts of effort in defining each. The techniques presented may be useful in stand-alone retrieval systems, front-ends to existing information retrieval systems, or real-time document filtering and routing.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-11 ,  Issue: 9 )