Cart (Loading....) | Create Account
Close category search window
 

Integrated Performance Models for Distributed Processing in Computer Communication Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Thomasian, A. ; IBM Thomas J. Watson Research Center ; Bay, P.F.

This paper deals with the analysis of large-scale closed queueing network (QN) models which are used for the performance analysis of computer communication networks (CCN's). The computer systems are interconnected by a wide-area network. Users accessing local/remote computers are affected by the contention (queueing delays) at the computer systems and the communication subnet. The computational cost of analyzing such models increases exponentially with the number of user classes (chains), even when the QN is tractable (product-form). In fact, the submodels of the integrated model are generally not product-form, e.g., due to blocking at computer systems (multiprogramming level constraints) and in the communication subnet (window flow control constraints). Two approximate solution methods are proposed in this paper to analyze the integrated QN model. Both methods use decomposition and iterative techniques to exploit the structure of the QN model such that computational cost is proportional to the number of chains. The accuracy of the solution methods is validated against each other and simulation. The model is used to study the effect that channel capacity assignments, window sizes for congestion control, and routing have on system performance.

Published in:

Software Engineering, IEEE Transactions on  (Volume:SE-11 ,  Issue: 10 )

Date of Publication:

Oct. 1985

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.