By Topic

Real-time K-Means Clustering for Color Images on Reconfigurable Hardware

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Maruyama, T. ; Syst. & Inf. Eng., Tsukuba Univ.

K-means clustering is a very popular clustering technique, which is used in numerous applications. However, clustering is a time consuming task, particularly for large dataset, and large number of clusters. In this paper, we show that real-time k-means clustering can be realized for large size color images (24-bit full color RGB) and large number of clusters (up to 256) using an off-the-shelf FPGA (field programmable gate arrays) board. In our current implementation with one FPGA, the performance for 512 times 512 and 640 times 480 pixel images is more than 30fps, and 20-30 fps for 756 times 512 pixel images in average when dividing to 256 clusters

Published in:

Pattern Recognition, 2006. ICPR 2006. 18th International Conference on  (Volume:2 )

Date of Conference:

0-0 0