By Topic

A Wrapper for Feature Selection Based on Mutual Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jinjie Huang ; Dept. of Autom., Shanghai Jiao Tong Univ. ; Yunze Cai ; Xiaoming Xu

This paper adopts a wrapper method to find a subset of features that are most relevant to the classification task. The approach utilizes an improved estimation of the conditional mutual information which is used as an independent measure for feature ranking in the local search operations. Meanwhile, the mutual information between the predictive labels of a trained classifier and the true classes is used as the fitness function in the global search for the best subset of features. Thus, the local and global searches consist of a hybrid genetic algorithm for feature selection. Experimental results demonstrate both parsimonious feature selection and excellent classification accuracy of the method on a range of benchmark data sets

Published in:

Pattern Recognition, 2006. ICPR 2006. 18th International Conference on  (Volume:2 )

Date of Conference:

0-0 0