By Topic

Independent component analysis based filter design for defect detection in low-contrast textured images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Du-Ming Tsai ; Dept. of Ind. Eng. & Manage., Yuan-Ze Univ. ; Yan-Hsin Tseng ; Shin-Min Chao ; Chao-Hsuan Yen

In this paper, we propose a convolution filtering scheme for detecting defects in low-contrast textured surface images and, especially, focus on the application for glass substrates in liquid crystal display (LCD) manufacturing. A defect embedded in a low-contrast surface image shows no distinct intensity from its surrounding region, and even worse, the sensed image may present uneven brightness on the surface. All these make the defect detection in low-contrast surface images extremely difficult. In this study, a constrained ICA (independent component analysis) model is proposed to design an optimal filter with the objective that the convolution filter will generate the most representative source intensity of the background surface without noise. The prior constraint incorporated in the ICA model confines the source values of all training image patches of a defect-free image within a small interval of control limits. In the inspection process, the same control parameter used in the constraint is also applied to set up the thresholds that make impulse responses of all pixels in faultless regions within the control limits, and those in defective regions outside the control limits. A stochastic evolutionary computation algorithm, particle swarm optimization (PSO), is applied to solve for the constrained ICA model. Experimental results have shown that the proposed method can effectively detect defects in textured LCD glass substrate images

Published in:

Pattern Recognition, 2006. ICPR 2006. 18th International Conference on  (Volume:2 )

Date of Conference:

0-0 0